Kamaelia - Networking
Using Generators

Michael Sparks
BBC Research & Development

ACCU Python 2005, Oxford

Kamaelia

® Project to explore long term systems for large
scale media delivery

® Forms a concurrency toolkit, focussed mainly on experimenting
with network protocols.

® 2 key portions:

® Axon - Core Component infrastructure, based on communicating
generators

e Kamaelia - Collection of components that use Axon.

® Aim: Scalable, easy & safe concurrent systems

(c) 2005 BBC R&D

Kamaelia Status

® Released as open source:

® http://kamaelia.sourceforge.net/

® Axon is at version |.0.3, and considered feature
stable.

® Runs on Linux,Windows (variety), Mac OS X

® Specialised distribution for Nokia Series 60 mobiles

e Kamaelia is at version 0.1.2,and growing
® Ability to write TCP & Multicast clients and servers
® Variety of simple servers, clients and protocols included

(c) 2005 BBC R&D

Kamaelia Status

e Kamaelia 0.1.2:
® Tested on Linux,Windows (variety), Mac OS X

® Subset on Nokia Series 60 mobiles

® Ease of use hypothesis has been tested with | pre-
university trainee, looks promising

(c) 2005 BBC R&D

Kamaelia Motivations

® |arge Scale Streaming
® Several million streams per day
® Big events have tens of thousands of concurrent viewers
® Want to scale to handling millions of concurrent viewers

® Since this could happen.

(c) 2005 BBC R&D

Kamaelia Motivations

e What If |10 years from now...

e the BBC opened the entire archive!

® Creative Archive is NOT that ambitious! (AFAIK)

® the entire UK got broad

® |nstantly hit long tail pro
® 20 million homes!?

® 20 million different things?

band?

blems

® Not like 20 million people watching BBCI !

(c) 2005 BBC R&D

Kamaelia Motivations

® Key Problems:

RTP was originally concieved for A/V conferencing/telephony
Aspects don’t scale well for large scale unidirectional streaming

Need a platform for designing, implementing and testing new open
standards to scale in this way.

Scalability and ability to experiment often conflict.
Large scale means highly parallel
Scalable concurrency often has a high barrier to entry

® Limits new ideas, collaboration

(c) 2005 BBC R&D

Axon

e Kamaelia's Core Concurrency System

® Key aims:
® Scalable appoach
® Reusable

® Simple - easy enough for novice programmer to pick up and
produce useful systems.

® Novices see possibilities, not problems

e Safe - it should be possible to write programs without worrying
about race hazards

® Non locking if possible

(c) 2005 BBC R&D

Scaling Concurrency

® "Threads are for people who cant program state
machines." — Alan Cox (http://tinyurl.com/a6ées)

® Processes/Threads/Build your own

® Processes and threads are well known to be not scalable cross
platform.

® Build your own:
® Normally means state machines

® What about people who "cant program state machines" ?

® (NotadigatAlan!)

(c) 2005 BBC R&D

Scalability : State machines

Hard to get 100% right - especially for novices
Debugging someone else’s - twice as hard

State machine is a piece of sequential processing that
can release control half way and be restarted retaining

state

Twisted - at it’s heart very state machine based.

® Provides a very good framework for this and provides lots of
high quality assistance

e Still has this barrier to entry (my personal opinion,YMMYV)

(c) 2005 BBC R&D

Scalability or ease ?

Do we really have to choose!?

® Consider:

e A state machine is a piece of sequential processing that can
release control half way and be restarted

e A generator is a piece of sequential processing that can release
control half way and be restarted

® T[wisted also recognises this: twisted.flow

e Takes a different approach to composition

e Kamaelia uses generators

® Hypothesised this would be easier for novices

(c) 2005 BBC R&D

Kamaelia vs Twisted?

e NO!

e Kamaelia could be integrated into twisted (or vice versa) - we just
haven't looked at that yet

e Twisted is stable, mature and usable for production
systems

e Kamaelia isn't mature or suitable for production systems at
present

® Won’t always be that way, but even when it isn’t we'd rather
collaborate rather than compete.

® Lengthy answer in Kamaelia’s blog

(c) 2005 BBC R&D

Concurrency is Easy ?

® Concurrency is hard
® ..so why do we let sys admins do it!
® Think unix pipelines:

e find -type f | egrep -v '/build/|*./MANIFEST" |while read i ;
do cp ../Source/$i $i done

® This has 4 logically concurrent units!
® Do unix sys admins think of themselves concurrent programmers!?

® Do you think of it that way!?

(c) 2005 BBC R&D

Unix Pipelines

Concurrent sequential processes - linear
Items don't know what's next in the pipeline

Simply communicate with local file handles

Often forgotten “hidden” details:
® How data passes between processes

® The system environment

(c) 2005 BBC R&D

Axon - Key classes

Components - self pausing sequential objects that
send data to local interfaces

Linkages - a facility for joining interfaces, allowing
system composition

Scheduler - gives components CPU time

Postman - The facility for tracking linkages, and
handling data transferral

Co-ordinating Assistant/Tracker (cat) - Provides
environmental facilities akin to a Linda tuple space

(c) 2005 BBC R&D

Axon Components

® Classes with a generator method called "main”

® Augmented by:
® List of Inboxes - defaults: inbox, control
® List of Outboxes - defaults: outbox, signal

® class Echo(component):
def main(self):
while |:
if self.dataReady("inbox"):
data = self.recv("inbox")
self.send(data,"outbox")
yield |

(c) 2005 BBC R&D

Axon Scheduler

® Operation
® Holds a run queue containing activated components

e Calls the generator for each component sequentially

e Component Activation

e If the return value is a newComponent object the components
contained are activated (essentially their main() method is called,
and the resulting generator stored)

® Component Deactivation

e If the return value is false, the component is removed from the run
queue

(c) 2005 BBC R&D

Linkages

® Normally join outboxes to inboxes between
components

® out-out and in-in also allowed between parent and nest
components

® |inkages can only be create inside a component

® Inboxes and outboxes designed for connection to subcomponents
are considered private and have the naming convention of a
leading underscore

® Encourages composition and reuse

(c) 2005 BBC R&D

Linkage Example

® class SimpleStreamingClient(component):
def main(self):
client=TCPClient("127.0.0.1",1500)
decoder =VorbisDecode()
player = AOAudioPlaybackAdaptor()
self.link((client,"outbox"), (decoder,;"inbox")
self.link((decoder,"outbox"), (player,"inbox"))

self.addChildren(decoder, player, client)
yield newComponent(decoder, player, client)
while |:

self.pause()

yield |

(c) 2005 BBC R&D

Linkage Example 2

def AdHocFileProtocolHandler(filename):

class klass(Kamaelia.ReadFileAdaptor.ReadFileAdaptor):

def __init__ (self,*argy,"*argd):
self. _super. _init__ (filename, readmode="bitrate", bitrate=400000)
return klass

class SimpleStreamingServer(component):
def main(self):
server = SimpleServer(protocol=AdHocFileProtocolHandler (“foo.ogg"),
port=clientServerTestPort)
self.addChildren(server)
yield _Axon.Ipc.newComponent(*(self.children))
while 1:
self.pause()
yield |

(c) 2005 BBC R&D

Linkage Example: Re-use

class SimpleMulticastStreamingClient(component):
def main(self):

client = Multicast_transceiver(*0.0.0.0", 1600, "224.168.2.9", 0)
adapt = detuple(l)
decoder =VorbisDecode()
player = AOAudioPlaybackAdaptor()
self.link((client,"outbox"), (adapt, inbox")
self.link((adapt, "outbox"), (decoder,"inbox")
self.link((decoder,"outbox"), (player,"inbox"))

self.addChildren(decoder, adapt, player, client)
yield newComponent(decoder, adapt, player, client)
while 1:

self.pause()

yield |

(c) 2005 BBC R&D

Co-ordinating Assistant Tracker

® Tracking Services
e This allows for the concept of services
® A service is a mapping of name to (component, inbox) tuple

® Only ever "need" one 'select’ statement in a program for example.
(want is a different matter!)

® The Kamaelia.Internet.Selector component offers a "selector"
service

® Tracking Values

® Provides look up and modification of values for keys

® Use case: to enable stats collection in servers

(c) 2005 BBC R&D

Howto: Example Component

e MIME/RFC2822 type objects are common in
network protocols

® Email, web, usenet, etc..

® Essentially serialised key/value pairs - much like a
dict.

® Create a “MIME Dict” component.

® Accepts dict like objects, but translates them to MIME-like
messages

® Accepts MIME-like messages, and converts them to dicts.

(c) 2005 BBC R&D

MimeDictComponent

® How it was written

® First of all a class that could be a "MIME dict" was written
® Subclasses dict

® Alwaysaddsa BODY key

® Replaces __ str__ with something that displays the dict as an
RFC2822/MIME style message

® Adds a staticmethod "fromString" as a factory method.

e Written entirely test first without a view
to being used as a component

(c) 2005 BBC R&D

MimeDictComponent 2

® Wanted a component thus:

control - on which we may receive a shutdown message
signal - one which we will send shutdown messages

demarshall - an inbox to which you send strings for turning into
dicts

marshall - an inbox to which you send objects for turning into
strings

demarshalled - an outbox which spits out parsed strings as
dicts

marshalled = an outbox which spits out translated dicts as
strings
(c) 2005 BBC R&D

MimeDictComponent 3

® Jurned out to be simpler to write a generic marshalling
component instead, main loop looked like this:

while |:
self.pause()
if self.dataReady("control"):
data = self.recv("control")
if isinstance(data, Axon.lpc.producerFinished)
self.send(Axon.lpc.producerFinished(), "signal")
return
if self.dataReady("marshall"):
data = self.recv("marshall")
self.send(str(data),"'marshalled")
if self.dataReady("demarshall”):
data = self.recv("demarshall")
self.send(self.klass.fromString(data),"demarshalled")
yield |

(c) 2005 BBC R&D

MimeDictComponent 4

® Subclassing approach:

® class MimeDictMarshaller(MarshallComponent):
def _init__ (self,*argy,**argd):
self. _super.__init__ (MimeDict, *argv,**argd)

® Class decoration approach:

® def MarshallerFactory(klass):
class newclass(MarshallComponent):
def _init__ (self,*argv,**argd):
self. _super.__init__(klass, *argv,**argd)
return newclass

MimeDictMarshaller=MarshallerFactory(MimeDict)

(c) 2005 BBC R&D

Summary: New Components

® | onger tutorial based around a multicast
transceiver on the website.

® Same approach:
e Don't worry about concurrency, write single threaded
® When code works, then convert to components

® Change control methods into inboxes/outboxes

(c) 2005 BBC R&D

Ease of use!

® TJested on Ciaran Eaton, a pre-university trainee
® Happy to let me call him a novice programmer (triple checked)

® Previous experience: A-Level computer studies - small amount of
Visual Basic programming and Access

® 3 Month placement with our group

e Started off learning python & axon (2 weeks)

® Created a “learning system” based around parsing a Shakespeare
play:
® Performs filtering, character identification, demultiplexing etc

® Used pygame for display, stopped short of using pyTTS...

(c) 2005 BBC R&D

Ease of use! 2

e Ciaran’s project:
® Created a simplistic low bandwidth video streamer

® Server has an MPEG video, and takes a frame as JPEG every n
seconds

® This is sent to the client over a framing protocol Ciaran designed
and implemented

® The client then displays the images as they arrive
® On a PC this uses pygame
® On a series 60 mobile this uses the native image display calls

® The idea is this simulates previewing PVR content on a mobile

(c) 2005 BBC R&D

Ease of use? 3

Project was successful, Ciaran achieved the goals

Ciaran wrote all the components for every part of
the description.

Relied on a “SimpleServer” and simple “TCPclient”
components - but these only provide reliable data
transfer over the network.

He’s noted that it was a fun experience

e | find it interesting it was not frustrating given his background.

(c) 2005 BBC R&D

CSP vs State Machines

s this app

We woulc

roach inherently worse or better?

suggest neither.

State mac

nine systems often have intermediate

buffers (even single variables) for handoff between
state machines

This is akin to outboxes and inboxes. If they are
collapsed into one, as planned, this is equivalent

® If we do collapse outboxes into inboxes when we create linkages,

then the sy

stem should be as efficient as frameworks like twisted.

® This is currently hypothetical.

(c) 2005 BBC R&D

Integration with other systems

® Default component provides a default main, which
calls 3 default callbacks.

® | ooks like this:

® def main(self):

result = self.initialiseComponent()
if not result:

result = |
yield result
while(result):

result = self.mainBody/()

if result:

yield result

yield self.closeDownComponent()

(c) 2005 BBC R&D

Integration: 2

® Purpose of the 3 callback form is for 2 main
reasons

® For those who find callback forms easier to work with

® To allow these methods to be overridden by classes written in:
® Pyrex
o C
o C++

® e optimisation of components

(c) 2005 BBC R&D

Futures

C++ Version.

® Simple “miniaxon” version including C++ based generators
working. see: cvs:/Code/CPP/Scratch/miniaxon.cpp

Python Axon will be optimised

Syntactic Sugar will be added

Automated component distribution over clusters
Kamaelia Component Repository

More protocols, experimental servers:

e RTSP/RTP initially. New protocols to follow!

(c) 2005 BBC R&D

Finally: Collaboration

® |f you're interested in working with us, please do

® If you find the code looks vaguely interesting, please use and give
us feedback

® We're very open to exploring changes to the system and willing to
give people CVS commit access in order to try their ideas.

® Anyone working with twisted is very welcome to come and
criticise and suggest new ideas - integration would be very nice!

e Contacts, project blog:

® michaels@rd.bbc.co.uk, kamaelia-list@lists.sourceforge.net

e http://kamaelia.sourceforge.net/cgi-bin/blog/blog.cgi

(c) 2005 BBC R&D

